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The effects of polymer stresses on near-wall turbulent structures are examined by
using direct numerical simulation of fully developed turbulent channel flows with and
without polymer stress. The Reynolds number based on friction velocity and half-
channel height is 395, and the stresses created by adding polymer are modelled by a
finite extensible nonlinear elastic, dumbbell model. Both low- (18 %) and high-drag
reduction (61 %) cases are investigated. Linear stochastic estimation is employed to
compute the conditional averages of the near-wall eddies. The conditionally averaged
flow fields for Reynolds-stress-maximizing Q2 events show that the near-wall vortical
structures are weakened and elongated in the streamwise direction by polymer stresses
in a manner similar to that found by Stone et al. (2004) for low-Reynolds-number
quasi-streamwise vortices (‘exact coherent states: ECS’). The conditionally averaged
fields for the events with large contribution to the polymer work are also examined.
The vortical structures in drag-reduced turbulence are very similar to those for
the Q2 events, i.e. counter-rotating streamwise vortices near the wall and hairpin
vortices above the buffer layer. The three-dimensional distributions of conditionally
averaged polymer force around these vortical structures show that the polymer force
components oppose the vortical motion. More fundamentally, the torques due to
polymer stress are shown to oppose the rotation of the vortices, thereby accounting
for their weakening. The observations also extend concepts of the vortex retardation
by viscoelastic counter-torques to the heads of hairpins above the buffer layer, and
offer an explanation of the mechanism of drag reduction in the outer region of wall
turbulence, as well as in the buffer layer.

1. Introduction
Turbulent flows of dilute polymer solutions are known to experience significant

reduction of drag relative to the flow of Newtonian fluids under the some conditions.
Some of the more important effects that have been established are as follows.
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(1) There exist critical values of parameters (e.g. polymer relaxation time and
concentration) above which there is onset of drag reduction (DR) (Virk et al. 1967;
Sreenivasan & White 2000).

(2) A maximum drag reduction (MDR) limit exits, which is known as Virk’s
asymptote (Virk 1971).

(3) The Reynolds shear stress is reduced significantly, and the total mean stress
is larger than the sum of the Reynolds shear stress and the viscous stress. The
difference is called the ‘stress deficit’. Direct numerical simulations have clearly shown
that polymeric stress, arising from the flow-induced stretching of the macromolecules,
accounts for the stress deficit. As DR increases, the polymer stress increases signi-
ficantly, whereas the Reynolds shear stress decreases (Willmarth, Wel & Lee 1987).
The stress deficit can also be expressed in terms of an effective viscosity (Sureshkumar,
Beris & Handler 1997).

(4) The characteristic length scales, such as the thickness of the buffer region and
average streak spacing, increase with increasing DR (Oldaker & Tiederman 1977).
Particle image velocimetry (PIV) measurements of White, Somandepalli & Mungal
(2004) show the longitudinal scale of the flow to be increased significantly. Analysis
by proper orthogonal decomposition (POD) reveals that the dominant modes in
drag-reduced flows contain a larger portion of energy, compared to an equivalent
Newtonian case (de Angelis et al. 2003; Housiadas, Beris & Handler 2005). It is
also found that DR hardly changes the shape of the energy-containing modes, but
most of the change occurs in the coefficients of the energy-containing modes, not the
dissipation modes (de Angelis et al. 2003).

(5) In the low-DR (<35 %) regime, the mean velocity profile is shifted upward with
the same slope in the log region. In the high-DR (>38 %) regime, the slope in the
log region is increased. At maximum DR, the buffer region occupies the whole core.
Recently, a phenomenological theory of polymer DR has been developed, in which the
mean velocity profile at maximum DR is derived theoretically (L’vov et al. 2004; Benzi
et al. 2006). In the low-DR regime, the streamwise turbulent intensity increases with
increasing DR, but in the high-DR regime, it decreases with increasing DR (Warholic,
Massah & Hanratty 1999). Despite such progress, there is no universally accepted
explanation of the mechanism by which very small concentrations of polymer (of
order 10–100 p.p.m.) can produce 10–60 % drag reduction.

Over the past decade direct numerical simulations (DNS) of turbulent flows, using
various models of non-Newtonian fluid rheology to model the effect of adding
polymers, have shown good agreement with experimental observations (Sureshkumar
et al. 1997; Dimitropoulos et al. 1998, 2001; de Angelis, Casciola & Piva 2002; Min
et al. 2003a , b; Dubief et al. 2004, 2005; Ptasinski et al. 2003; Gupta, Sureshkumar
& Khomami 2005; Li, Sureshkumar & Khomami 2006a). It has been reported that
the use of a viscoelastic polymer model is essential to predict the onset of DR and
the stress deficit. The most widely used model is based on polymer kinetic theory and
utilizes a finitely extensible nonlinear elastic (FENE) dumbbell model of the polymer,
i.e. two beads representing hydrodynamic resistance offered by the chain connected by
an entropic spring. The stress produced by the model is related to the ensemble average
of F Q, where F and Q denote the spring force and the end-to-end vector, respectively.
In order to obtain a continuum-level constitutive equation for the polymeric stress,
closure approximations are employed for the higher moments of Q and the form
suggested by Peterlin (1961), leading to the FENE-P model. Despite the simplicity of
the model, it qualitatively captures two of the most important features of the flow-
microstructure coupling, namely stretching/contraction and orientation by the flow.
It has been shown that the two key model parameters, the maximum extensibility L
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(i.e. Q · Q < L2) and the relaxation time λ (or equivalently the Weissenberg number
(We) defined as the ratio of the relaxation time to the characteristic inverse shear
rate) can be manipulated to access all of the experimentally observed DR regimes (Li
et al. 2006a).

Recently, several mechanisms of drag reduction by polymer additives have been
proposed owing to the successful DNS of the flow. Min et al. (2003 b) derived the
transport equation of polymer elastic energy and suggested that the elastic energy
stored in the polymers very near the wall is transported to the buffer layer and the
log layer and released there. Dubief et al. (2004) reported that the polymer work on
the flow is highly intermittent in space. Polymers were found to store energy and
release it back to the flow. The high intermittency of polymer work is consistent with
the polymer effect being associated with the intermittent near-wall structures such
as quasi-streamwise and hairpin vortices. Attempts have been made to understand
them by using exact coherent states (ECS) models by Graham and co-workers (Stone
et al. 2002, 2004; Li, Xi & Graham 2006b). They have suggested that viscoelasticity
has a weakening effect on the streamwise vortices, and for sufficiently low values
of the friction Reynolds number (≈ 45), the coherent structures can be suppressed
entirely if the elastic effects are sufficiently large. This idea, that the viscoelasticity
caused by the polymers weakens vortices that are similar to turbulent vortices, is
a powerful, simplifying concept. However, the precise influence of DR on near-wall
coherent structures that occurs in fully turbulent flow has not been evaluated.

In the Newtonian flow, the characteristics of wall turbulence such as high- and
low-speed streaks, sweep and ejection events, and elevated skin friction are closely
related to the near-wall vortical structures in the inner layer (Robinson 1991 and
many others) and the outer layer hairpin vortices (Adrian, Meinhart & Tomkins
2000; Ganapathisubramani, Longmire & Marusic 2003). Regarding drag reduction by
polymers in the inner layer, de Angelis et al. (2002) concluded that ‘the viscoelastic
reaction exhibits a remarkable level of coherence, associated to the organized motions
induced by the coherent structures present in the wall region.’ In particular, they
discovered that the reaction of the viscoelastic force vector is anti-correlated with
turbulent velocity vector except very near the wall. This fundamental observation
has been further substantiated for near-wall quasi-streamwise vortices by Stone et al.
(2004), Dubief et al. (2004) and Li et al. (2006a).

The existing state of knowledge concerning reduction of turbulent drag by dilute
polymer solutions focuses almost entirely on the effects of non-Newtonian polymer
stresses in the viscous sublayer and buffer layer where turbulent motion is dominated
by long, quasi-streamwise vortices and low-speed streaks. As stated above, the
principal explanation for the weakening and enlargement of these near-wall vortices is
that the body forces due to polymeric stresses oppose the wall-normal and spanwise
motions of the vortices (de Angelis et al. 2002; Stone et al. 2004; Dubief et al.
2004; Terrapon et al. 2004), either because of the biaxial strain of the molecules in
the stagnation-point flow (Terrapon et al. 2004) or the strain due to the low-speed
streaks (Dubief et al. 2004). Recently, Roy et al. (2006) also showed by using a
low-dimensional model with nine spatial modes (Moehlis, Faisst & Eckhardt 2004)
that, at high Weissenberg numbers, polymer forces oppose both biaxial and uniaxial
extensional flows and suppress the instability of streaks, thereby the self-sustaining
process (Waleffe 1997) becomes weaker.

To continue to improve our understanding of turbulence structure in drag-reducing
flow, it is important to examine the details, location and extent of the effects of
polymeric stresses on vortical structures in both the near-wall and the outer layer of
fully turbulent flow. At low Reynolds number, the viscous layer and the buffer layer
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are arguably the most important regions for drag reduction because the majority
of the mean velocity change occurs across them. But, at higher Reynolds number,
where many real applications reside, a significant fraction of the velocity rise occurs
above the buffer layer, making it necessary to understand the effects of polymers in
that region, as well. To this end, the present study examines the vortices in Reτ =395
channel flow with drag reduction of 0 %, 18 % and 61 % based on a FENE-P model,
as in Li et al. (2006a). The higher Reynolds number ensures that there is room for
hairpin eddies and other three-dimensional eddies to form in the outer layer.

To achieve a clearer picture of the relationship between the eddies and the polymer
stresses, we use stochastic estimation based on the two-point correlation tensor of
velocity, to find conditional eddies associated with the large Q2 events that typify the
production of Reynolds shear stress in the buffer layer and in the outer layer. To
connect with previous work, the relationships between the polymer body force and the
conditional eddies are presented, and we find strong evidence to support the idea that
polymer stress counteracts the near-wall vortices. The simplicity of the conditional
eddies, relative to the complexity of instantaneous fields (cf. figure 8 in Dubief et al.
2005, for example), also makes it possible to determine the details of the polymer force
distribution around an eddy. To put these ideas on a more fundamental mechanical
basis, we explore how the torques due to polymer stress are distributed around the
quasi-streamwise vortices and the heads and legs of hairpins. The torques are the
source of weakening of the eddies in the equation for mean square vorticity and, as
such, they are more important than forces in determining the overall mechanism and
affecting turbulent transport. Finally, we show that the counter-torques created by
straining the polymers also inherently oppose the rotation of the legs and heads of
the hairpins, i.e. the elements responsible for generating much of the Reynolds shear
stress in the logarithmic layer. Thus, even if the near-wall layer were to be destroyed
by, say, roughness of the wall, there is still a mechanism by which polymers can
reduce turbulent momentum transport.

2. Governing equations and numerical method
The non-dimensional governing equations of unsteady, incompressible, viscoelastic

flow with the FENE-P model are given by
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where ui is the velocity, p is the pressure, and τij is the polymer stress. The friction
velocity uτ and the channel half-height h are used as the velocity and length scale,
respectively. The Reynolds number is defined as Reτo = uτh/νo, where νo is the zero-
shear-rate kinematic viscosity of the solution. The parameter β is the ratio of the
solvent viscosity (µs) to the total solution zero-shear-rate viscosity (µo). The polymer
stress tensor, τij , is made dimensionless using µpouτ/h, where µpo =µo − µs is the
polymer contribution to the total zero-shear-rate viscosity of solution. The last term
in (2.2) is referred to as the polymer body force, fi , and it arises from the polymer
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Newtonian Low DR High DR

DR(%) – 18 61
Weτo(= λu2

τ /νo) – 25 100
L2 – 900 14400
β – 0.9 0.9

Lx × Lz 2πh × πh 4πh × 0.5πh 8πh × 0.5πh
L+

x × L+
z 2482 × 1241 4964 × 620 9927 × 620

Grid 128 × 129 × 128 128 × 129 × 64 256 × 129 × 64
�tuτ /h 2 × 10−4 2 × 10−4 1 × 10−4

Table 1. Simulation details.

stress. The polymer stress, τij , is obtained by solving an evolution equation for the
conformation tensor, cij , which is the average second moment of the polymer chain
end-to-end distance vector. It has maximum dimensionless extensibility L2. Note
that cij and L2 are made dimensionless by kT /H , where k, T and H denote the
Boltzmann constant, the absolute temperature and the Hookean dumbbell spring
constant, respectively. In the FENE-P model, the polymer stress is related to the
departure of the conformation tensor from its equilibrium state as expressed in (2.3).
The Weissenberg number Weτo = λu2

τ /νo is the ratio of the polymer relaxation time,
λ, to the flow time scale.

The numerical method used for solving the governing equations is described in detail
in Li et al. (2006a). Time integration of the governing equations is achieved by a semi-
implicit method. In space, a fully spectral method is used with Fourier representations
in the streamwise and spanwise directions, and Chebyshev expansion in the wall-
normal direction. In order to achieve stable numerical integration of the evolution
equation for the conformation tensor, a stress diffusion term D∂2cij /∂x2

k is introduced
in (2.3), where D = κ/huτ , and κ denotes a constant, isotropic, artificial numerical
diffusivity. As in earlier studies (Sureshkumar et al. 1997; Dimitropoulos et al. 1998),
the dimensionless artificial numerical diffusivity D is taken to be of O(10−2). The
boundary condition for cij at the wall is imposed as the result of integrating (2.3)
without the diffusion term (Dimitropoulos et al. 1998). Periodic boundary conditions
are applied in the streamwise and spanwise directions, and the no-slip boundary con-
dition is imposed on velocity at the solid walls. For the Newtonian flow (Reτo =395),
the simulation domain is 2πh × 2h × πh (2500 × 790 × 1250 in wall units) in the
streamwise, wall-normal and spanwise directions, respectively. For this DR flow, a
larger streamwise domain is required, since drag reduction is accompanied by an
increase in streamwise correlation length. Note that simulation of MDR flow with
a small streamwise domain results in laminar flow (Li et al. 2006a), contradicting
experimental observation of sustained turbulence even in the MDR regime (Warholic
et al. 1999). In the present DR simulations, the streamwise computational domain
was chosen to be either two or four times longer than that for the Newtonian flow,
as needed. Details of the polymer parameters and grid resolutions in the simulations
are listed in table 1.

3. Stochastic estimation
The effects of polymer additives on the characteristic near-wall flow structures

are investigated by examining the conditionally averaged flow field around them.
With an appropriate choice of the event (or condition) in the conditional average,
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attention can be focused on different types of near-wall coherent structures. A true
conditional average is statistically very hard to obtain, especially when the condition is
multidimensional. Here, we approximate the conditional averages by linear stochastic
estimation (Adrian 1996). The conditional average of a fluctuating quantity, gi(x, t),
given a set of one-point events or conditions, Ej (x ′, t) (j = 1, . . . , N , where N is the
total number of conditions specified at the point x ′) is denoted as 〈gi |E〉. Given
Ej (x ′, t), the conditional average is the best estimate for gi(x, t), in the sense of
minimum mean square error. Linear stochastic estimation approximates conditional
averages in a form that is computationally convenient, since it depends only on un-
conditional averages. The accuracy of linear stochastic estimation as an approximation
to conditional average has been reported elsewhere (Adrian et al. 1989).

The linear stochastic approximation of the conditional average 〈gi |E〉 is written as

ĝi(x, t) = Lij (x, x ′)Ej (x ′, t). (3.1)

Choosing Lij to minimize the mean square error yields equations for Lij in terms of
unconditional, two-point, second-order spatial correlation tensors:

〈Ej (x ′)Ek(x ′)〉Lij = 〈gi(x)Ek(x ′)〉, (3.2)

where the angle brackets represent the ensemble average.

4. Results
4.1. Turbulent vortical structures in DR flows

Figure 1 shows the wall vortical structures detected by plotting isosurfaces of swirl-
ing strength, λci . Swirling strength is defined as the imaginary part of the complex
conjugate eigenvalues of the local velocity gradient tensor (Zhou et al. 1999;
Chakraborty, Balachandar & Adrian 2005). The swirling strength extracts compact
vortical cores and discriminates against regions of shear. In figure 1(a), the number
of vortices with intense swirling strength decreases with increasing DR. For the
DR =61 % case, vortices with λciν/u2

τ = 0.1 totally disappear and vortices with lower
swirling strength are detected more intermittently. In the viscoelastic flows the vortical
structures are significantly weaker than in the Newtonian flow. This weakening is one
of the key features of reduced-drag wall-bounded turbulent flows (Choi, Moin &
Kim 1993, 1994; Lim, Choi & Kim 1998). Figure 1(b) shows isosurfaces of the swirl-
ing strength relative to its maximum in each domain. As DR increases, vortices
thicken and their streamwise lengths increase, while their strengths weaken (figure 1a).
The streamwise length scale of turbulent structures is also observed to increase in
experiments (White et al. 2004).

It is known that coherent near-wall structures are closely related to the production
of Reynolds shear stress (Robinson 1991). In drag-reducing flow, experimental results
show that the Reynolds shear stress decreases significantly (Wei & Willmarth 1992;
Warholic et al. 1999; Ptasinski et al. 2001). We have examined the changes of the
vortical structures that occur as Reynolds shear stress decreases in the viscoelastic
flows. To obtain the conditional averaged flow fields associated with the Reynolds
stress, we follow the method of Moin, Adrian & Kim (1987) (cf. also Kendall 1992;
Zhou et al. 1999). A second-quadrant (Q2) event at a given y location is chosen as
the event for the linear stochastic estimation. These Q2 events (E1, E2) = (um, vm) are
found by detecting the values of u′ = um and v′ = vm that maximize the probability-
weighted Reynolds shear stress u′v′ p.d.f.(u′, v′), i.e., which have largest contribution
to the mean Reynolds shear stress.
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DR = 0%
(a)

(b)

DR = 18%

DR = 61%

DR = 0%

DR = 18%

DR = 61%

λciν/u2
τ = 0.1

λciν/u2
τ = 0.1

λciν/u2
τ = 0.04

y

x
z

Figure 1. Near-wall vortical structure in the drag-reducing flow with polymer additives. The
distance between ticks on each axis is 100 wall units. The same instantaneous flow fields are
used in both (a) and (b) for each DR case. (a) Contours of non-dimensionalized swirling
strength λciν/u2

τ ; (b) contours of 20 % of maximum λci .

Figures 2(a)–2(f ) show the isosurfaces of λci for the stochastically estimated velocity
field of the Q2 event specified at y locations between 5.8 � y+ � 200. The conditional
eddies given Q2 events very near the wall (y+ � 19.9) are counter-rotating pairs
of streamwise vortices that induce ejections between them. Further away from the
wall (y+ � 30.1), the conditional eddies given Q2 events are hairpin vortices. As
DR increases, the streamwise lengths of the counter-rotating streamwise vortices
increase and the spanwise spacing between the centre of each streamwise vortex
pair also increases. For the hairpin vortices, the legs of the hairpins in the non-
Newtonian flows are more elongated and bigger than those of the Newtonian flow.
The inclination angles of the vortex legs become smaller with increased DR. We have
also stochastically estimated the velocity field for the DR cases using the same event
vector as for the Newtonian case and the results (not shown here) show that the
inclination angle of the vortex legs is still smaller in the DR case. This behaviour is
consistent with the observation that the addition of polymers causes the flow to be
more parallel to the wall (Warholic et al. 2001).

Since two-dimensional events (um, vm, 0) are used in the estimation, the estimated
flow structures (figures 2a–2f ) are symmetric about the z = 0. Asymmetric structures
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DR = 0%

DR = 18%

DR = 61%

DR = 0%

DR = 18%

DR = 61%

(a) (b)

(c) (d)

(e) ( f )

(g) (h)
y

x
z

Figure 2. Vortical structures of the linearly estimated flow field with the Q2 event u′ =
(um, vm, 0): (a) y+ = 5.8; (b) y+ = 19.9; (c) y+ = 30.1; (d) y+ = 51.3; (e) y+ = 102; (f ) y+ =200.
Asymmetric structures in the linearly estimated flow field with the event u′ = (um, vm, 2vm):
(g) y+ = 19.9; (h) y+ =200. The structures corresponding to the DR = 0 %, 18 % and 61 %
case are displayed in ascending order of DR in the streamwise direction. The vortices are
identified with an isosurface of swirling strength (35% of maximum λci). The vectors represent
the velocity events used in the estimation. The distance between ticks on each axis is 100 wall
units.

can also be detected by using an event with non-zero w component in addition
to Q2 events. Figures 2(g) and 2(h) show the asymmetric flow structure associated
with the event (um, vm, 2vm) at y+ = 19.9 and 200, respectively. As in the case of
symmetric structures, these asymmetric structures are bigger and more elongated in
the streamwise direction as DR increases.

4.2. Vortical structures educed by polymer work events

To see the effects of polymer additives on the turbulence, we consider the budget
equations for the kinetic energy of each turbulent velocity fluctuations (i = 1, 2, 3, no
summation on i):
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where (D̄( · ))/(D̄t) = 〈uk〉(∂( · ))/(∂xk). In (4.1), the ‘polymer work’ appears as the
correlation between velocity fluctuations and polymer force fluctuations, Ei = 〈u′

if
′
i 〉.

Negative (positive) Ei means the energy carried by velocity fluctuations u′
i is dampened

(enhanced) by storage (release) of elastic energy in the polymers. Figure 3 shows the
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y+
0 100 200 300

–10

–5

0

5

Eα

Figure 3. Profiles of polymer work: Ex = 〈u′f ′
x〉 (——); Ey = 〈v′f ′

y〉 (− − −);

Ez = 〈w′f ′
z〉 (− · − · −). Lines only: DR = 18 %; Lines with symbols: DR = 61 %.

profiles of the values of polymer work term Ei . In the 〈u′2〉 equation, Ex has positive
values in the viscous sublayer and negative values away from the wall. This is
consistent with the findings of de Angelis et al. (2002) and Li et al. (2006a) that the
correlation of u′ and f ′

x is positive very close to the wall but changes its sign away
from the wall. However, Ey and Ez are always negative, consistent with the findings
that polymer forces oppose the fluid motion around the near-wall streamwise vortices
(Stone et al. 2004; Dubief et al. 2005). As DR increases, the maximum and minimum
values of Ex increase in magnitude while the magnitudes of Ey and Ez decrease. The
locations of all extrema of Ei shift away from the wall with increased DR.

To understand the polymer work further, we have examined the joint probability
density function of u′

i and f ′
i at the y locations of the local minimum and the

maximum of Ei . Very close to the wall, large positive values of the streamwise
polymer work are detected more frequently in the high-speed streaks, consistent with
Dubief et al. (2004). However, we found that the event making the largest positive
contribution to Ex occurs in the low-speed streak. The location of the maximum in
the contour plot of u′

if
′
i p.d.f.(u′

i , f
′
i ) corresponds to the values of u′

i and f ′
i that

contribute most to the mean polymer work Ei .
To see the flow structures associated with polymer work, we examined the

conditional averages of the flow fields associated with the events contributing most
to the polymer work:

〈u(x)|u′
i = am and f ′

i = bm at the y location of maximum or minimum Ei〉. (4.2)

The conditional fields are obtained by linear stochastic estimation with the
events summarized in table 2. Figures 4(a) and 4(b) show the vortical structures
corresponding to the event contributing most to Ex at the locations of maximum
and minimum Ex . The estimated structures are nearly the same as those associated
with large Q2 event at similar y locations in figures 2(a)–2(b). Closer inspection of
figures 4(a) and 4(b) reveals that between streamwise vortices, positive Ex is located
very close to the wall while the locations of negative Ex are farther away from the
wall, at nearly the same as y location as the maximum of ωx,rms (not shown here).
Figure 4(c) shows the vortical structures associated with negative polymer work Ey
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DR y+ a b arms brms am/arms bm/brms

18 % maximum Ex 2.97 u′ f ′
x 1.08 4.87 −1.20 −0.60

minimum Ex 17.01 u′ f ′
x 2.92 5.66 −1.60 0.60

minimum Ey 51.32 v′ f ′
y 0.79 3.28 1.20 −0.60

minimum Ez 33.89 w′ f ′
z 1.12 4.08 1.20 −0.60

61 % maximum Ex 7.59 u′ f ′
x 2.13 6.22 −1.60 −0.60

minimum Ex 37.92 u′ f ′
x 4.45 6.32 −1.80 0.40

minimum Ey 159.70 v′ f ′
y 0.45 3.01 0.80 −0.20

minimum Ez 137.00 w′ f ′
z 0.65 3.64 1.00 −0.20

Table 2. Values of u′
i and f ′

i at the locations of maximum contribution to the polymer work.
For the cross-stream components, the events are chosen with positive velocity fluctuations.

DR = 18%

DR = 61%

DR = 18%

DR = 61%
(a) (b)

(c) (d)

Figure 4. Conditional eddies given the event (u′
i , f

′
i ) at the y location of (a) the positive

maximum of Ex , (b) the negative maximum of Ex , (c) the negative maximum of Ey , (d) the
negative maximum of Ez. The structures corresponding to the DR = 18 % and 61% case are
displayed in ascending order of DR in the streamwise direction. The eddies are identified with
an isosurface of swirling strength (35 % of maximum λci). The vectors indicate only velocity
u′

i of the event (u′
i , f

′
i ) in table 2. The distance between ticks on each axis is 100 wall units.

at its minimum locations. Figures 4(a)–4(c) show that the vortical structures related
to the polymer works Ex and Ey are very similar to those for the Q2 events (figure 2).
Figure 4(d) shows the flow structures corresponding to the event contributing most
to Ez. The signs of the upper and lower streamwise vortices oppose each other, and
the vortices induce large positive spanwise velocity and negative spanwise polymer
force in the overlapped region. Because these structures are from the conditionally
averaged flow field regardless of the sign of u′ and v′, these asymmetric structures
show different shapes from those in figures 2(g) and 2(h). The eddies are weaker and
bigger as DR increases, similar to the behaviour of the eddies detected by the Q2
event in figure 2.

4.3. Distribution of polymer forces and torques around turbulent vortical structures

Dubief et al. (2005) showed isosurfaces of each component of polymer force (f ′
i ) and

vortical structures for one three-dimensional realization, and the visualization clearly
indicated that polymer forces cluster in the immediate neighbourhood of near-wall
vortices. However, it is hard to interpret the anti-correlation between polymer force
and velocity from visualization of a random field because the instantaneous flow
field is too complicated. Stone et al. (2004) showed the distribution of polymer forces
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(a) DR = 18% (b) DR = 61%(i)

(ii)

(iii)

y

x
z

Figure 5. Isosurfaces of conditional polymer force components (i) f ′
x , (ii) f ′

y and (iii) f ′
z

around the eddy structure at y+ = 19.9. (a) DR = 18 %. (b) DR = 61 %. The grey and black
surfaces denote positive and negative values of polymer force, respectively. The isosurface
levels of polymer force are (a): (i) f ′

x = ± 1.0 (ii) f ′
y = ± 0.4 (iii) f ′

z = ± 0.4; (b): (i) f ′
x = ± 1.0

(ii) f ′
y = ± 0.3 (iii) f ′

z = ± 0.45. White surfaces show the vortices identified with 35 % of
maximum λci . The distance between ticks on each axis is 100 wall units.

(f ′
y, f

′
z) and velocity fluctuations (v′, w′) for the ECS. Since the ECS is smoother and

simpler than a three-dimensional realization at high Re, it was possible to clearly
see that (f ′

y, f
′
z) opposes (v′, w′) motion of the quasi-streamwise vortices in the ECS.

However, the Reynolds number of the ECS was low. In the present study, owing to
the conditional averages, we are able here to explore the relationship between the full
three-dimensional polymer force fields and conditional eddies of fully turbulent flow.
Our findings support and give detail to those of Dubief et al. (2005) and Stone et al.
(2004). Furthermore, we find a simpler and more basic mechanistic interpretation in
terms of non-Newtonian torques that inherently oppose the rotation of the vortices,
both quasi-streamwise vortices and hairpin (ω′

z).
To investigate the distribution of polymer forces around the counter-rotating pair

of streamwise vortices, the isosurfaces of the stochastically estimated polymer forces
are displayed in figure 5. Figures 5a(i) and 5b(i) show the isosurface of the streamwise
component of polymer force around the vortical structure of the estimated flow fields
given a Q2 event at y+ = 19.9. The counter-rotating pair of streamwise vortices induce
negative streamwise velocity fluctuations which result in a low-speed streak between
each vortex. Positive f ′

x is detected between the streamwise vortices, where negative
u′ is induced, while a region of negative f ′

x is observed very close to the wall. This is
consistent with the polymer work Ex profiles which has negative value except very near
the wall in figure 3. Figures 5a(ii) and 5a(iii) show the isosurface of wall-normal and
spanwise components of polymer force around the vortex pair for the DR = 18 % case.
The streamwise elongated regions of strong vertical polymer force (f ′

y) are observed
along either side of the streamwise vortices, while elongated regions of strong spanwise
polymer force (f ′

z ) occur above and below the streamwise vortices. The vortex pair
associated with the ejection induces positive wall-normal velocity fluctuations between
each vortex and negative v′ along outer flanks of vortices. Considering the location
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Figure 6. Time- and x–z-plane-averaged terms normalized by u6
τ /ν

3 in the transport equation
of ω2

x: ST (——); TT 1 (− − −); TT 2 (− · − · −); DF (· · · · · ·); VE (—•—). (a) DR = 0 %;
(b) DR = 18 %; (c) DR = 61 %. See (4.3) for the definition of the different terms.

of upwelling and downwelling flow associated with the vortices, the distributions of
f ′

y and f ′
z show the polymer force directly counteracting the fluid motion around the

streamwise vortices. For DR = 61 %, shown in figures 5b(ii) and 5b(iii ), the behaviour
is similar. These results, based on DNS, are consistent with the findings that the
velocity and polymer force are anti-correlated around the counter-rotating pairs of
streamwise vortices in exact coherent state models (cf. figure 14 of Stone et al. 2004).

The opposition of polymer forces to Reynolds-stress-producing motions is a
fundamental mechanism for reducing Reynolds shear stress and drag. Taking one
step further, given that much of the Reynolds stress is created by vortices, one can
ask how polymer stresses inhibit vortex motion. To investigate the effect of polymer
additives on the strength of streamwise vortices, the following equation for the square
of streamwise vorticity is examined:

1

2

Dω2
x

Dt
= ω2

x

∂u

∂x︸ ︷︷ ︸
ST

− ωx

∂w

∂x

∂u

∂y︸ ︷︷ ︸
TT1

+ ωx

∂v

∂x

∂u

∂z︸ ︷︷ ︸
TT 2

+ ωx

β

Reτo

∇2ωx︸ ︷︷ ︸
DF

+ ωx

(
∂fz

∂y
− ∂fy

∂z

)
︸ ︷︷ ︸

VE

. (4.3)

The first four terms on the right-hand side of (4.3) represent: ST= contribution
due to stretching of ωx , TT1 = net contribution due to the tilting of ωy , TT2 = net
contribution due to the twisting of ωz, DF = diffusion. The polymer effect appears
in the last term (VE), which represents the work done by the torque of the polymer
force field. Figure 6(a) shows the time- and x–z-plane-averaged values of the different
terms of (4.3) in the Newtonian flow. TT2 is negligible compared with the other three
terms (ST, TT1 and DF), consistent with the results of Brooke & Hanratty (1993). For
y+ < 10, the tilting term (TT1) dominates, whereas the stretching term has nearly the
same magnitude as the tilting term for y+ > 20. For the high-DR (= 61 %) case, TT1

dominates over a much larger distance from the wall, and it remains comparable to
ST throughout the channel, while for low-DR (= 18 %), the profiles of TT1 and ST are
similar to those for the Newtonian case. In both drag-reducing flows (figures 6b and
6c), the polymer contribution (VE) is negative. Since VE represents the correlation
of (∇ × u)x and (∇ × f )x , a negative value implies that the polymer torque acts in the
opposite direction to the vorticity, and thus it reduces the strength of the vortex. At
DR =61 %, the negative contribution of VE to streamwise vorticity is relatively much
larger than in the lower DR case, thus explaining the significantly reduced strength
of vortical structures that occur at higher drag reduction. The profiles of other terms
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Figure 7. Two-point cross-correlation coefficient between streamwise vorticity fluctuations at
(x, y0, z) and streamwise polymer torque fluctuations at (x + rx, ry, z + rz) for (a) DR = 18 %,

y+
0 = 19.9, and (b) DR = 61 %, y+

0 =37.9. Contours are plotted in the (i) x–y plane at r+
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x = 0, (iii) x–z plane at r+

y = y+
0 . The increment of contour levels is 0.05.

Negative contours are dashed and zero contours are not drawn. Flooded contours represent
Rω′

xω
′
x
.

show similar behaviour; however, the magnitudes are reduced owing to the weakened
vortex.

To examine the spatial distribution of polymer torque around the near-wall
streamwise vortex, two-point cross-correlation coefficients between ω′

x and streamwise
polymer torque fluctuations T′

x = (∇ × f ′)x have been calculated:

Rω′
xT′

x

(
rx, ry, rz; y0

)
=

〈ω′
x(x, y0, z)T′

x(x + rx, ry, z + rz)〉
ω′

x,rms(y0) T′
x,rms(ry)

, (4.4)

where the reference location, y0, is chosen as the location of local maximum in
the ω′

x,rms profile. Figure 7 shows contours of Rω′
xT′

x
plotted on the three mutually

perpendicular planes for DR = 18 % and 61 %. To indicate the location of the
streamwise vortex, the auto-correlation of streamwise vorticity fluctuations, Rω′

xω
′
x

is
also shown by flooded contours. Strong negative values of Rω′

xT′
x

occur around the
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vortex core. They are elongated in the streamwise direction with an inclination angle
similar to the auto-correlation of ω′

x . The negative correlations show that the polymer
torque acts counter to streamwise vortical motions throughout the region of the core.
This is consistent with the mean negative contribution of the polymer torque to ω′2

x

in figure 6. Positive correlations of Rω′
xT′

x
appear above and below the streamwise

vortex centre, coincident with negative values of the auto-correlation of ω′
x . Since

negative Rω′
xω

′
x

indicates rotations counter to those of the central vortex, the positive
correlations of Rω′

xT′
x

indicates that the torque acts counter to the vortical motion in
these regions, also. As DR increases, the correlation contour becomes more elongated
in the streamwise direction and wider in the spanwise direction. The magnitude of
Rω′

xT′
x

decreases owing to reduced ω′
x,rms as DR increases.

Above the buffer layer, the hairpin vortices become more common than quasi-
streamwise vortices (cf. figure 2). To see the distribution of polymer forces around
the hairpin vortex, the polymer body forces around the vortical structure of the
stochastically estimated flow fields given a Q2 event at y+ =102 are examined. The
distribution of polymer body force, the velocity and polymer force vectors on the
x–y and y–z planes are displayed in figure 8. In the x–y plane located at z+ =0,
it is clear that, immediately upstream of the hairpin vortex head, the polymer force
inhibits the Q2 pumping of the hairpin vortex. For both DR cases, the streamwise
component of polymer force is directed in the negative streamwise direction very
close to the wall. This is consistent with positive correlation between f ′

x and u′ in the
vicinity of the wall (de Angelis et al. 2002). In the y–z plane located at x+ = 0, the
velocity vectors show a counter-rotating vortical motion around the vortex legs, and
the polymer force vectors also show a counter-rotating pattern that is opposite in
direction to the vortex pair. The centres of the polymer force patterns deviate from
the centres of the velocity vector plots. For example, in the case of DR = 18 %, the
centre of the polymer force is located at y+ = 80, below that of fluid motion located
at y+ = 110. The spanwise separation between the centres of polymer force patterns
is �z+ = 70, as compared with �z+ = 145 for the velocity patterns. Flooded contours
of the swirling strength provide another means of locating the cores of the hairpin
vortex. The polymer force pattern is in better alignment with the swirling strength
pattern than the velocity vector pattern, but the relationship between the vortex
pattern and the polymer force pattern is still not simple enough to conclude that the
polymer force uniformly retards the vortex motion everywhere. Better evidence for
vortex retardation is found by comparing the pattern of vorticity–vorticity correlation
with the vorticity–torque correlation: figure 9. As with the comparison in figure 7,
the plot shows that the polymer torque is clearly anti-correlated with the spanwise
vorticity around the core of the hairpin head.

The present results show that the modified vortical structures due to the polymer
additives and distribution of polymer forces around the vortices are qualitatively
similar between low- and high-drag reduction cases, although the mean velocity
profiles appear fundamentally different in the low- and high-drag regimes, as stated
in the Introduction.

5. Summary and conclusions
The effects of polymer additives on the structure of eddies in wall turbulence

have been investigated by analysing direct numerical simulations (Li et al. 2006a)
of fully developed turbulent channel flows with and without polymer additives. The
analysis uses two-point spatial correlations and linear stochastic estimation to find the
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Figure 8. Velocity and polymer body force vectors on the x–y and y–z planes at z+ = 0 and
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y). Flooded contours of λci are

also overlaid, with dark regions indicating large swirling strength.

patterns of velocity, vorticity, polymer force and polymer torque in the conditional
eddies. The polymer stress is modelled using a FENE-P dumbbell model and the
Reynolds number based on friction velocity and half-channel height is 395. Both
low-DR (18 %) and high-DR (61 %) cases were investigated and compared to the
results for Newtonian flow.

The changes of the vortical structures associated with decreased Reynolds shear
stress are examined by linear stochastic estimation for the second-quadrant (Q2)
event that makes the maximum contribution to mean second-quadrant Reynolds
shear stress. Given a Q2 event at y+ � 19.9, the conditional eddies are found to
be a pair of counter-rotating streamwise vortices. Given Q2 events at y+ � 30, the
conditional eddies resemble hairpins. As DR increases, the conditional eddies become
more elongated and bigger and the inclination angles of the vortex legs become
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smaller. In general, the coherent vortices in DR flow are bigger, weaker and (from
inspection of realization of the random fields) less numerous.

The effects of polymer stresses on the turbulence have been investigated by
examining the polymer work term in the Reynolds stress budget equations. The
streamwise polymer work is positive very close to the wall, but changes its sign to
be negative away from the wall. However, the cross-stream components always have
negative values across the whole channel. The behaviour of the polymer work term
is consistent with the previous findings of de Angelis et al. (2002). The conditionally
averaged fields for the events with large contribution to the polymer work show that
the vortical structures related to the large events contributing to polymer work are
very similar to those for the Q2 events. This verifies that the interaction between
added polymer stresses and the conditional eddy structures are important in polymer
drag-reducing flows.

It is found that the distributions of conditionally averaged polymer force and torque
around the three-dimensional conditional eddy structures associated with Q2 events
retard the vortex motion. The concept of vortex retardation by polymer forces was
introduced in the study of the energetics of fully turbulent flow with polymer forces
by de Angelis et al. (2002) and Dubief et al. (2005), and in the work of Stone et al.
(2004) for the quasi-streamwise vortices found in exact coherent states at relatively
low Reynolds number. The present work extends the concept of vortex retardation by
polymer forces in fully turbulent wall flow by relating the three-dimensional structure
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of the conditional eddies to the structure of the polymer force fields associated with
them. Our results confirm and add scope to the conclusions of earlier work. Further,
we have shown that the polymer forces inhibit the Q2 pumping of the hairpin vortex
as well as the ejection/sweep motions at the flanks of quasi-streamwise vortices in
the buffer layer. The retardation of Q2 events associated with hairpins is a new
mechanism.

The simplest explanation of vortex retardation rests in the relationship between the
vorticity and the torque caused by polymer stresses. Our most important finding is
that the vortex motions of both the quasi-streamwise vortices and the hairpin vortices
create viscoelastic stresses whose torques, ∇ × (∇ · τ ), inherently oppose the rotation
of the vortices. This idea is similar to the concept of eddy damping by polymer forces,
but it more specifically addresses the source of the Reynolds stress damping, which
lies in counter-torques applied to the vortices responsible for generation of Reynolds
shear stresses.

The weakening of the vortices by polymer torques and the accompanying increase
in their size explain part of the decrease in Reynolds shear stress production and skin
friction. But, visualizations also indicate that the number of vortices in DR flows is
also reduced, and some portion of the reduction of Reynolds shear stress and drag
must also be attributable to this effect. Hence, the vortex retardation mechanism may
not by itself provide a complete explanation of drag reduction by polymers. Further
work is needed to see how the retardation affects the creation and destruction of
vortices and the equilibrium number density of the vortex population.
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